Further Graphics

Alex Benton, University of Cambridge — alex@bentonian.com

Supported in part by. Google UK, Ltd

Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently
in one direction from another, as a function of the surface itself. The specular
component is modified by the direction of the light.

———

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/

The rendering equation

[Reflected Ilght BRD{/J L;Ient light

L (w) = p(w[,w)L, (w;)cosf.dw;
Q

= [¢;,0;]
e . I

Most rendering methods
require solving an
(approximation) of the
rendering equation

_

Integral over the
hemisphere of
incident light

/

BRDF: Bidirectional Reflectance
Distribution Function

[Differential radiance of reflected light]
— .
dL.(w,) dL.(w,) |
p(wir wr) — —

dH,(w,)) L(w;)cos8dw,

Differential irradiance of incoming light]

BRDF is measured as a ratio of reflected radiance to irradiance
® Because it is difficult to measure L (w,), it’s impractical to
define BRDF simply as the ratio of L (w) to L.(w.)

BRDF of various Reflected "ght]

materials

[Incident light

.,_,‘_-xrﬂ‘ == \

T.hes.e dl?,grams ShOW the 1.0 ﬂsAtiar;)ﬁn(l}ano]o, 02 04 06 08 1.0
distribution of reflected *
light for the given

incoming direction

The material samples are
close but not accurate
matches for the diagrams

| | j
1.0 0.8 0.6 04 (

Magnesium alloy;

A=0.5um

Measuring BRDF

e Gonio-Reflectometer
e BRDF measurement
e point light source position (6,¢)
® light detector position (6 _,¢)
e 4 directional degrees of freedom
e BRDF representation
e m incident direction samples
(0,9)
e 1 outgoing direction samples
©,.4,
e m™*n reflectance values
(large!!!)

Stanford light gantry 6

Improving on the classic lighting
implementations

Soft shadows are expensive

Shadows of transparent objects require
further coding or hacks

Lighting off reflective objects follows

different shadow rules from normal lighting

Hard to implement diffuse reflection (color
bleeding, such as in the Cornell
Box—mnotice how the sides of the inner
cubes are shaded red and green.)

Fundamentally, the ambient term is a hack
and the diffuse term is only one step in
what should be a recursive, self-reinforcing
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University
in 1984 by Don Greenberg. An actual box
is built and photographed; an identical
scene is then rendered in software and the
two images are compared.

Ambient occlusion

® Ambient illumination is a blanket constant that we often add to every
illuminated element in a scene, to (inaccurately) model the way that
light scatters off all surfaces, illuminating areas not in direct lighting.

® Ambient occlusion is the technique of
adding/removing ambient light when
other objects are nearby and scattered
light wouldn’t reach the surface.

e Computing ambient occlusion is a
form of global illumination, in which
we compute the lighting of scene
elements in the context of the scene
as a whole.

Original model With ambient occlusion

.)

Image from “ZBrush® Character Creation: Advanced 8
Digital Sculpting, Second Edition”, by Scott Spencer, 2011

Ambient occlusion 1n action

J

Car photos from John Hable’s presentation at GDC 2010, 9
“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

http://filmicgames.com/archives/6

Ambient occlusion 1n action

J

Car photos from John Hable’s presentation at GDC 2010, 0
“Uncharted 2: HDR Lighting” (ﬁlmicgames.com/archives/é)

http://filmicgames.com/archives/6

Ambient occlusion 1n action

—
.I :
—_
r =

——— |

J

Car photos from John Hable’s presentation at GDC 2010, 1
“Uncharted 2: HDR Lighting” (ﬁlmicgames.com/archives/(}‘)

http://filmicgames.com/archives/6

Ambient occlusion 1n action

.-Il‘::‘ . 7 | :| _:.'{ = | | o e |
wil o BEEEE TR RN RN

B TINTET emew

. -

Sl
<

L T s IR .;F:’-gf"g_.-;"'-a":_";h"?' - E T
R e S R B : :)

Car photos from John Hable’s presentation at GDC 2010,
“Uncharted 2: HDR Lighting” (ﬁlmicgames.com/archives/(}‘)2

http://filmicgames.com/archives/6

Ambient occlusion - Theory

We can treat the background (the sky)
as a vast ambient illumination source.

e For each vertex of a surface, compute
how much background illumination
reaches the vertex by computing how
much sky it can ‘see’

e Integrate occlusion Ap over the
hemisphere around the normal at the
vertex:

occlusion at point p

normal at point p

visibility from p in direction @
integrate over area (hemisphere)

e 6 o o
O S~

N

J

Bottom image credit: “GPU Gems 27, nVidia, 2005. Vertices mappec{
to illumination disks for hemispheric illumination mapping. 3

Ambient occlusion - Theory

e This approach is very flexible

Also very expensive!

e To speed up computation, randomly
sample rays cast out from each
polygon or vertex (this is a
Monte-Carlo method)

e Alternatively, render the scene from

the point of view of each vertex and
count the background pixels in the
render

e Best used to pre-compute per-object
“occlusion maps”, texture maps of
shadow to overlay onto each object

e But pre-computed maps fare poorly
on animated models...

J

Image credit: “GPU Gems 17, nVidia, 2004,

Top: without AO. Bottom: with AO.

14

Screen Space Ambient Occlusion
(“SSAQO”)

o

: .. A&

“True ambient occlusion is hard, 8
let’s go hacking.” E
g

e Approximate ambient occlusion 2
N

by comparing z-buffer values in
screen space!

e Open plane = unoccluded

e C(losed ‘valley’ in depth buffer =
shadowed by nearby geometry

e Multi-pass algorithm

e Runs entirely on the GPU

J

Image: CryEngine 2. M. Mittring, “Finding Next Gen —
CryEngine 2.0, Chapter 8”, SIGGRAPH 2007 Course 28

15

Screen Space Ambient Occlusion

1. For each visible point on a surface in the scene
(ie., each pixel), take multiple samples (typically
between 8 and 32) from nearby and map these
samples back to screen space

Check if the depth sampled at each neighbor is
nearer to, or further from, the scene sample point
If the neighbor is nearer than the scene sample

point then there is some degree of occlusion
a. Care must be taken not to occlude if the nearer
neighbor is too much nearer than the scene
sample point; this implies a separate object, much
closer to the camera
Sum retained occlusions, weighting with an

occlusion function —)

Image: StarCraft I. Advances in Real-Time Rendering in 3P6
Graphics and Games - Course notes, SIGGRAPH 2008

SSAO example- Uncharted 2

4) Low Pass Filter (significant blurring)

John Hable, GDC 2010, “Uncharted 2: HDR Lighting”
(filmicgames.com/archives/6)

17

http://filmicgames.com/archives/6

Ambient occlusion and Signed Distance

Fields

In a nutshell, SSAO tries to estimate
occlusion by asking, “how far is it to
the nearest neighboring geometry?”

With signed distance fields, this question
1s almost trivial to answer.

float ambient (vec3 pt, vec3 normal) {
return abs (getSdf(pt + 0.1 * normal)) / 0.1;
}

float ambient (vec3 pt, vec3 normal) {
float a = 1;
int step = 0;

for (float t = 0.01; t <= 0.1;) {
float d = abs(getSdf (pt + t * normal));
a = min(a, d / t);
t += max(d, 0.01);

}

return a;

}

Radiosity

® Radiosity 1s an illumination method which
simulates the global dispersion and
reflection of diffuse light.
e First developed for describing spectral
heat transfer (1950s)
e Adapted to graphics in the 1980s at
Cornell University
e Radiosity is a finite-element approach to
global illumination: it breaks the scene into
many small elements (‘patches’) and
calculates the energy transfer between
them.

Images from Cornell University’s graphics group
http://www.graphics.cornell.edu/online/research/

19

http://www.graphics.cornell.edu/online/research/

Radiosity—algorithm

Surfaces in the scene are divided into patches, small subsections of
each polygon or object.

For every pair of patches A, B, compute a view factor (also called a
form factor) describing how much energy from patch A reaches

patch B.
e The further apart two patches are in space or orientation, the less light
they shed on each other, giving lower view factors.

Calculate the lighting of all directly-lit patches.
Bounce the light from all lit patches to all those they light, carrying
more light to patches with higher relative view factors. Repeating
this step will distribute the total

light across the scene, producing

a global diffuse illumination model. f

L

)

Radiosity—mathematical support

The ‘radiosity’ of a single patch i1s the amount of energy leaving
the patch per discrete time interval.

This energy is the total light being emitted directly from the patch
combined with the total light being reflected by the patch:

B, =E,+R) BF,
j=1
This forms a system of linear equations, where...

B 1s the radiosity of patch i
B is the radloslty of each of the other patches (j#i)

E/l. is the emitted energy of the patch
R 1s the reflectivity of the patch
F i 1s the view factor of energy from patch i to patch ;.

21

Radiosity—form factors

Finding form factors can be done
procedurally or dynamically
e C(Can subdivide every surface into small
patches of similar size
e Can dynamically subdivide wherever the 1
derivative of calculated intensity rises above
some threshold.
Computing cost for a general radiosity
solution goes up as the square of the number
of patches, so try to keep patches down.
e Subdividing a large flat white wall could be
a waste.
Patches should ideally closely align with
lines of shadow.

22

Radiosity—implementation

(A) Simple patch triangulation
(B) Adaptive patch generation: the floor
and walls of the room are dynamically

subdivided to produce more patches
where shadow detail 1s higher.

Images from “Automatic
generation of node spacing
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/

nspE.htm

(A)

(B)

23

http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm

Radiosity—view factors

One equation for the view factor between
patches i, j is:

cos @, cos b,
Fi— j= —V (i,))
w
...where 6. is the angle between the normal of
patch i and the line to patch j, 7 is the distance
and V(i) is the visibility from i to j (0 for
occluded, 1 for clear line of sight.)

High view factor

/

4

K Low view factor

/

24

Radiosity—calculating visibility

e C(alculating V(i,j) can be slow.

e One method is the hemicube, in which each form factor is encased in a
half-cube. The scene is then ‘rendered’ from the point of view of the
patch, through the walls of the hemicube; V(i j) i1s computed for each
patch based on which patches it can see (and at what percentage) in its
hemicube.

e A purer method, but more computationally expensive, uses
hemispheres.

Note: This method can be accelerated
o using modern graphics hardware to

i render the scene. The scene is
‘rendered’ with flat lighting, setting the
‘color’ of each object to be a pointer to
the object in memory.

Hemicube Projection Hemispherical Projection

25

Radiosity gallery

Image from A Two Pass Solution to the Rendering Equation.
a Synthesis of Ray Tracing and Radiosity Methods,

John R. Wallace, Michael F. Cohen and Donald P. Greenberg
(Cornell University, 1987)

Image from
GPU Gems II, nVidia

Teapot (wikipedia)

26

References

Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)
Anisotropic surface:

e A. Watt, 3D Computer Graphics - Chapter 7: Simulating light-object interaction: local reflection models
e Eurographics 2016 tutorial - D. Guarnera, G. C. Guarnera, A. Ghosh, C. Denk, and M. Glencross - BRDF
Representation and Acquisition

Ambient occlusion and SSAOQO:

e “GPU Gems 27, nVidia, 2005. Vertices mapped to illumination.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html

e Mittring, M. 2007. Finding Next Gen — CryEngine 2.0, Chapter 8, SIGGRAPH 2007 Course 28 — Advanced
Real-Time Rendering in 3D Graphics and Games
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding NextGen CryEngine2.pdf

e John Hable’s presentation at GDC 2010, “Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Radiosity:

e http://http.developer.nvidia.com/GPUGems2/gpugems?_chapter39.html

e http://www.graphics.cornell.edu/online/research/

e Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, “A Ray Tracing Algorithm for Progressive
Radiosity.” In Computer Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315-324.

e Buss, “3-D Computer Graphics: A Mathematical Introduction with OpenGL” (Chapter XI), Cambridge
University Press (2003)

27

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf
http://filmicgames.com/archives/6
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
http://www.graphics.cornell.edu/online/research/

